Vanadium-Bromine Redox Flow Battery

Flow Batterie Kolloquium in Karlsruhe am 27. September 2017

H. Frank Gibbard, Ph.D.
CEO WattJoule Corporation
Devens, Massachusetts USA
In the past few years the demand for large-scale energy storage has increased for several applications:

- **Renewables integration**
- Ancillary services
- Arbitrage
- Grid asset optimization
- T&D deferral
- Telecommunications – substitute for diesel
Renewables Integration

Wind & Solar Variability Problem

Wind Output

Solar Output

Oregon Wind Farm
10 - 100% in 1 hour

Arizona Solar Farm
10 - 80% in 5 min
Why Redox Flow Batteries?

- Separation of POWER and ENERGY
- More POWER = larger stack
- More ENERGY = larger tank
- Competitive energy efficiency

- Highly durable: 10,000+ cycles
- Safe, non-flammable liquid
- Lowest CapEx & OpEx
- Large application space

WattJoule

AICL Industrial Products

Where needs take us
Product Development Approach

- Start with a proven chemistry to lower risk: vanadium redox
- Engineer a next-gen OEM platform: quantum improvement
- Identify key barriers preventing full commercialization
- Utilize open innovation approach to secure best IP
- Leverage the best expertise wherever it is
- Develop a multi-generational pipeline of product improvements
Building a Superior Product

<table>
<thead>
<tr>
<th>CURRENT PROBLEM SET</th>
<th>WATTJOULE IMPROVEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrochemical stacks are large and use expensive materials</td>
<td>New breakthroughs now allow major reductions in stack size</td>
</tr>
<tr>
<td>Electrolyte energy density is low and requires large tanks</td>
<td>We have technology that increases the energy we can store in every liter</td>
</tr>
<tr>
<td>System needs refrigerated cooling thereby increasing costs and lowering efficiency</td>
<td>We can now eliminate AC and chiller equipment with our platform</td>
</tr>
<tr>
<td>Lifetime system efficiency needs improvement</td>
<td>We now add major efficiency improvements with no added cost</td>
</tr>
<tr>
<td>Need for costly, high purity active materials like vanadium</td>
<td>We have a pathway to utilizing less and then no vanadium over time</td>
</tr>
<tr>
<td>Relatively high cost vs. attractive economics</td>
<td>All of the above improvements translate to significantly lower cost</td>
</tr>
</tbody>
</table>
Quantum Improvement Factors

Pathway to Better VRB Metrics

<table>
<thead>
<tr>
<th>Key Metric</th>
<th>SOA¹</th>
<th>Gen 1</th>
<th>Gen 2 V-Br</th>
<th>Core Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Converter Stack Power Density</td>
<td>1X</td>
<td>6X</td>
<td>7X</td>
<td>Lower material cost</td>
</tr>
<tr>
<td>Electrolyte Energy Density</td>
<td>1X</td>
<td>2X</td>
<td>3X</td>
<td>Less liquid required</td>
</tr>
<tr>
<td>Electrolyte Temperature Range</td>
<td>1X</td>
<td>3X</td>
<td>3.2X</td>
<td>No active cooling needed</td>
</tr>
<tr>
<td>Roundtrip Efficiency</td>
<td>1X</td>
<td>1.1X</td>
<td>1.2X</td>
<td>Lower life cycle cost</td>
</tr>
<tr>
<td>Vanadium Cost Reduction</td>
<td>1X</td>
<td>1.4X</td>
<td>2.2X</td>
<td>Lower vanadium cost</td>
</tr>
<tr>
<td>DC System Capital Cost ($/kWh)</td>
<td>600</td>
<td>200</td>
<td>150</td>
<td>Significantly lower CapEx</td>
</tr>
</tbody>
</table>

¹ State-of-the-Art Redox Flow Battery
ElectriStor™ ES10 Test System

2kW, 10kWh Engineering Prototype II, DC Only

1,000-fold increase in power and energy from 2014-2016
So...What’s Next?

- We believe that the improvements made in the chemistry, materials and design of our Gen 1 all-vanadium redox flow battery have pushed this system nearly to its maximum performance and minimum cost limits.
- Further improvements in our RFB platform will require a change in the basic system chemistry.
- With financial and technical support from ICL, we have chosen the vanadium-bromine redox flow battery for further development.
V-Br Redox Flow Battery

Performance
• Electrolyte energy density of ≥ 50 Wh/kg
• Operating electrode current density of ≥ 200 mA/cm²
• Maximum power density of ≥ 1000 mW/cm²
• Standard operating temperature of 45°C
• Round-trip DC electrical efficiency of 80%

Cost
• $150/kWh for DC energy storage system
V-Br Redox Flow Battery

Electrode reactions for charge:

Negative electrode reaction:

$$2V^{3+} + 2e^- \rightarrow 2V^{2+}$$

Positive electrode reaction:

$$2Br^- + QB_{r_n} \rightarrow QB_{r_{n+2}} + 2e^-$$

Insoluble bromine oil falls to the bottom of the catholyte tank
V-Br Redox Flow Battery Advantages Over All-Vanadium

- Decrease amount of Vanadium by nearly 50%
- Increased electrolyte energy density
- Technology demonstrated in lab-scale hardware
- Utilizes Gen 1 high-power density cell technology
- Proprietary complexing agent provides multiple system benefits
- Strong WattJoule IP position
V-Br Redox Flow Battery
Advantages Over Other Chemistries

<table>
<thead>
<tr>
<th>ALTERNATIVE FLOW CHEMISTRIES</th>
<th>VANADIUM BROMINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen bromine requires large high pressure tanks to store flammable and explosive gaseous hydrogen, and needs expensive catalyst that degrades over time</td>
<td>Requires no catalyst and all the energy is safely stored in liquid form. Electrolyte contains over 60% water and cannot burn or explode.</td>
</tr>
<tr>
<td>Zinc bromine has dendrite problems on electrodes that require stripping and have durability issues. Power and energy coupled since hybrid flow. Low power density.</td>
<td>True redox flow battery that requires no plating and therefore has no dendrite problems. Power and energy capability completely uncoupled.</td>
</tr>
<tr>
<td>Iron chromium has a significant hydrogen and chlorine gassing problem under normal operation and has low energy density.</td>
<td>Virtually no gassing potential due to electrochemical operating mode. Much higher energy density can be achieved.</td>
</tr>
<tr>
<td>Vanadium-vanadium requires large stacks and tanks and the higher cost of vanadium, also has a limited temperature range.</td>
<td>Much higher power and energy density can be achieved while cutting vanadium use by 50%. Temperature range not an issue.</td>
</tr>
</tbody>
</table>
V-Br Test Results

Initial Results of Polarization Test on Gen 2
At 45°C in 25-cm² Cell

\[y = -0.0415x + 1.3373 \]
V-Br Test Results

Gen 2 Power Capability in 25-cm\(^2\) cell at 45°C
Vanadium Concentration 2.0 Mol/L

<table>
<thead>
<tr>
<th>Membrane</th>
<th>P(_{\text{max}}), mW/cm(^2)</th>
<th>Specific Resistance, Ωcm(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorinated Ion-Exchange</td>
<td>431</td>
<td>1.0375</td>
</tr>
</tbody>
</table>

Power Performance Similar to Gen 1 in First Experiments
V-Br Test Results

Typical UNSW Cycling with Bromine Complexation
Current Density only 10 mA/cm2

Figure H.23 Charge / discharge cycles of 2 M V$^{3.7+}$, 0.19 M MEM, 0.56 M MEP, 6.1 M HBr, 1.2 M HCl using ChiNafion membrane at 25°C (CY060929.cel; 50ml electrolytes; (+ve) 27°C (-ve) 26°C)
WattJoule Cycling Results at 200 mA/cm²
2M V at 45°C

V-Br Test Results
Dr. Frank Gibbard
CEO & Founder
frank@wattjoule.com
603-502-3234

Greg Cipriano
VP Business Development & Founder
greg@wattjoule.com
508-942-8995

WattJoule expresses its sincere thanks to ICL for its financial and technical assistance in carrying out the work on the V-Br redox flow battery system.