

## **Vanadium-Bromine Redox Flow Battery**

Flow Batterie Kolloquium in Karlsruhe am 27. September 2017



H. Frank Gibbard, Ph.D.

CEO WattJoule Corporation Devens, Massachusetts USA

#### **Stationary Energy Storage – Why Now?**



In the past few years the demand for large-scale energy storage has increased for several applications

- Renewables integration
- Ancillary services
- Arbitrage
- Grid asset optimization
- T&D deferral
- Telecommunications substitute for diesel



### **Renewables Integration**

# ₩attJoule

#### Wind & Solar Variability Problem



Oregon Wind Farm 10 - 100% in 1 hour





Arizona Solar Farm 10 - 80% in 5 min

# Why Redox Flow Batteries?





- Separation of POWER and ENERGY
- More POWER = larger stack
- More ENERGY = larger tank
- Competitive energy efficiency

- Highly durable: 10,000+ cycles
- Safe, non-flammable liquid
- Lowest CapEx & OpEx
- Large application space



# **Product Development Approach**



- Start with a proven chemistry to lower risk: vanadium redox
- Engineer a next-gen OEM platform: quantum improvement
- Identify key barriers preventing full commercialization
- Utilize open innovation approach to secure best IP
- Leverage the best expertise wherever it is
- Develop a multi-generational pipeline of product improvements



# **Building a Superior Product**



| CURRENT PROBLEM SET                                                                | WATTJOULE IMPROVEMENT                                                    |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Electrochemical stacks are large and use expensive materials                       | New breakthroughs now allow major reductions in stack size               |
| Electrolyte energy density is low and requires large tanks                         | We have technology that increases the energy we can store in every liter |
| System needs refrigerated cooling thereby increasing costs and lowering efficiency | We can now eliminate AC and chiller equipment with our platform          |
| Lifetime system efficiency needs improvement                                       | We now add major efficiency improvements with no added cost              |
| Need for costly, high purity active materials like vanadium                        | We have a pathway to utilizing less and then no vanadium over time       |
| Relatively high cost vs. attractive economics                                      | All of the above improvements translate to significantly lower cost      |



# **Quantum Improvement Factors**



#### Pathway to Better VRB Metrics

| Key Metric                      | SOA <sup>1</sup> | Gen 1 | Gen 2<br>V-Br | Core Benefit              |
|---------------------------------|------------------|-------|---------------|---------------------------|
| Converter Stack Power Density   | 1X               | 6X    | 7X            | Lower material cost       |
| Electrolyte Energy Density      | 1X               | 2X    | 3X            | Less liquid required      |
| Electrolyte Temperature Range   | 1X               | 3X    | 3.2X          | No active cooling needed  |
| Roundtrip Efficiency            | 1X               | 1.1X  | 1.2X          | Lower life cycle cost     |
| Vanadium Cost Reduction         | 1X               | 1.4X  | 2.2X          | Lower vanadium cost       |
| DC System Capital Cost (\$/kWh) | 600              | 200   | 150           | Significantly lower CapEx |



<sup>&</sup>lt;sup>1</sup> State-of-the-Art Redox Flow Battery

# **ElectriStor™ ES10 Test System**



2kW, 10kWh Engineering Prototype II, DC Only



1,000-fold increase in power and energy from 2014-2016



#### So...What's Next?



- We believe that the improvements made in the chemistry, materials and design of our Gen 1 allvanadium redox flow battery have pushed this system nearly to its maximum performance and minimum cost limits.
- Further improvements in our RFB platform will require a change in the basic system chemistry.
- With financial and technical support from ICL, we have chosen the vanadium-bromine redox flow battery for further development.



## **V-Br Redox Flow Battery**



#### **Performance**

- Electrolyte energy density of ≥ 50 Wh/kg
- Operating electrode current density of ≥ 200 mA/cm<sup>2</sup>
- Maximum power density of ≥ 1000 mW/cm<sup>2</sup>
- Standard operating temperature of 45°C
- Round-trip DC electrical efficiency of 80%

#### Cost

\$150/kWh for DC energy storage system



# **V-Br Redox Flow Battery**



Electrode reactions for charge:

Negative electrode reaction:

$$2V^{3+} + 2e^- \rightarrow 2V^{2+}$$

Positive electrode reaction:

$$2Br^- + QBr_n \rightarrow QBr_{n+2} + 2e^-$$

Insoluble bromine oil falls to the bottom of the catholyte tank



- 2 Negative electrode
- 3 Anolyte tank
- 4 Positive electrode
- 5 Polybromide

- 6 Catholyte tank
- 7 Separator
- 8 Pumps
- 9 Valve



# V-Br Redox Flow Battery Advantages Over All-Vanadium



- Decrease amount of Vanadium by nearly 50%
- Increased electrolyte energy density
- Technology demonstrated in labscale hardware
- Utilizes Gen 1 high-power density cell technology
- Proprietary complexing agent provides multiple system benefits
- Strong WattJoule IP position



- 2 Negative electrode
- 3 Anolyte tank
- 4 Positive electrode
- 5 Polybromide

- 6 Catholyte tank
- 7 Separator
- 8 Pumps
- 9 Valve



# V-Br Redox Flow Battery Advantages Over Other Chemistries



| ALTERNATIVE FLOW CHEMISTRIES                                                                                                                                       | VANADIUM BROMINE                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Hydrogen bromine requires large high pressure tanks to store flammable and explosive gaseous hydrogen, and needs expensive catalyst that degrades over time        | Requires no catalyst and all the energy is safely stored in liquid form. Electrolyte contains over 60% water and cannot burn or explode.   |
| Zinc bromine has dendrite problems on electrodes that require stripping and have durability issues. Power and energy coupled since hybrid flow. Low power density. | True redox flow battery that requires no plating and therefore has no dendrite problems. Power and energy capability completely uncoupled. |
| Iron chromium has a significant hydrogen and chlorine gassing problem under normal operation and has low energy density.                                           | Virtually no gassing potential due to electrochemical operating mode. Much higher energy density can be achieved.                          |
| Vanadium-vanadium requires large stacks and tanks and the higher cost of vanadium, also has a limited temperature range.                                           | Much higher power and energy density can be achieved while cutting vanadium use by 50%. Temperature range not an issue.                    |







# Initial Results of Polarization Test on Gen 2 At 45°C in 25-cm2 Cell



Discharge Current, A





# Gen 2 Power Capability in 25-cm<sup>2</sup> cell at 45°C Vanadium Concentration 2.0 Mol/L

| Membrane     | Pmax, mW/cm <sup>2</sup> | Specific Resistance, Ωcm² |
|--------------|--------------------------|---------------------------|
| Fluorinated  | 431                      | 1.0375                    |
| Ion-Exchange |                          |                           |

**Power Performance Similar to Gen 1 in First Experiments** 





#### Typical UNSW Cycling with Bromine Complexation Current Density only 10 mA/cm<sup>2</sup>



Figure H.23 Charge / discharge cycles of 2 M V<sup>3.7+</sup>, 0.19 M MEM, 0.56 M MEP, 6.1 M HBr, 1.2 M HCl using ChiNafion membrane at 25°C (CY060929.cel; 50ml electrolytes; (+ve) 27°C (-ve) 26°C)





# WattJoule Cycling Results at 200 mA/cm2 2M V at 45°C



V of 0523 Gen2 cycling.004
 I of 0523 Gen2 cycling.004





#### **Dr. Frank Gibbard**

CEO & Founder <a href="mailto:frank@wattjoule.com">frank@wattjoule.com</a> 603-502-3234

#### **Greg Cipriano**

VP Business Development & Founder <a href="mailto:greg@wattjoule.com">greg@wattjoule.com</a>
508-942-8995

WattJoule expresses its sincere thanks to ICL for its financial and technical assistance in carrying out the work on the V-Br redox flow battery system.



